d03 — Partial Differential Equations d03pdc

NAG C Library Function Document

nag pde parab_1d_coll (d03pdc)

1 Purpose

nag pde parab_1d coll (d03pdc) integrates a system of linear or nonlinear parabolic partial differential

equations (PDEs) in one space variable. The spatial discretization is performed using a Chebyshev C°
collocation method, and the method of lines is employed to reduce the PDEs to a system of ordinary
differential equations (ODEs). The resulting system is solved using a backward differentiation formula
method.

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_coll (Integer npde, Integer m, double *ts, double tout,

void (*pdedef) (Integer npde, double t, const double x[], Integer nptl,
const double ul], const double ux[], double p[], double q[], double r[],
Integer *ires, Nag_Comm *comm) ,

void (*bndary) (Integer npde, double t, const double u[], const double ux[],
Integer ibnd, double beta[], double gammal[], Integer xires,
Nag_Comm *comm) ,

double u[l, Integer nbkpts, const double xbkpts[], Integer npoly,
Integer npts, double x[],

void (*uinit) (Integer npde, Integer npts, const double x[], double u[],
Nag_Comm *comm) ,

double acc, double rsave[], Integer Irsave, Integer isave[], Integer lisave,
Integer itask, Integer itrace, const char *outfile, Integer *ind,
Nag_Comm *comm, Nag_DO03_Save *saved, NagError *fail)

3 Description

nag pde parab_1d coll (d03pdc) integrates the system of parabolic equations:

= 8UI —ma m .
ZPMWJFQI‘:X a(xR,.), i=1,2,...,npde, a<x<b,t>1, (1)

J=1

where P;;, O; and R; depend on x, ¢, U, U, and the vector U is the set of solution values

Ule.t) = [U1(x.0). . Uppaels. z)r, 2)

and the vector U, is its partial derivative with respect to x. Note that P;
ou

ot
The integration in time is from 7y to 7y, over the space interval a < x < b, where a = x| and b = Xypypes
are the leftmost and rightmost of a user-defined set of break points xj,x;, ..., Xppipts- 1he co-ordinate

system in space is defined by the value of m; m = 0 for Cartesian co-ordinates, m = 1 for cylindrical polar
co-ordinates and m = 2 for spherical polar co-ordinates.

j» ¥; and R; must not depend on

The system is defined by the functions P;;, O; and R; which must be specified in a function pdedef
supplied by you.

The initial values of the functions U(x,¢) must be given at ¢t = ¢;, and must be specified in a function
uinit.

[NP3660/8] d03pdc. 1

d03pdc NAG C Library Manual

The functions R;, for i = 1,2, ..., npde, which may be thought of as fluxes, are also used in the definition
of the boundary conditions for each equation. The boundary conditions must have the form
Bi(x, O)R;(x,t, U, U,) = v;(x,t,U,U,), i=1,2,... npde, (3)

where x = a or x = b.

The boundary conditions must be specified in a function bndary provided by you. Thus, the problem is
subject to the following restrictions:

(1) 1?9 < tou, SO that integration is in the forward direction;

(i) P;j, Q; and the flux R; must not depend on any time derivatives;

(iii) the evaluation of the functions P;;, Q; and R; is done at both the break points and internally selected
points for each element in turn, that is P;;, Q; and R; are evaluated twice at each break point. Any
discontinuities in these functions must therefore be at one or more of the break points
X1, X250+ - 7xnbkpts;

(iv) at least one of the functions P;; must be non-zero so that there is a time derivative present in the
problem;

(v) if m > 0 and x; = 0.0, which is the left boundary point, then it must be ensured that the PDE solution
is bounded at this point. This can be done by either specifying the solution at x = 0.0 or by
specifying a zero flux there, that is 5; = 1.0 and v, = 0.0. See also Section 8 below.

The parabolic equations are approximated by a system of ODEs in time for the values of U; at the mesh
points. This ODE system is obtained by approximating the PDE solution between each pair of break
points by a Chebyshev polynomial of degree npoly. The interval between each pair of break points is
treated by nag_pde parab_1d_coll (d03pdc) as an element, and on this element, a polynomial and its space
and time derivatives are made to satisfy the system of PDEs at npoly — 1 spatial points, which are chosen
internally by the code and the break points. In the case of just one element, the break points are the
boundaries. The user-defined break points and the internally selected points together define the mesh. The
smallest value that npoly can take is one, in which case, the solution is approximated by piecewise linear
polynomials between consecutive break points and the method is similar to an ordinary finite element
method.

In total there are (nbkpts— 1) x npoly+ 1 mesh points in the spatial direction, and
npde x ((nbkpts — 1) x npoly + 1) ODEs in the time direction; one ODE at each break point for each
PDE component and (npoly — 1) ODEs for each PDE component between each pair of break points. The
system is then integrated forwards in time using a backward differentiation formula method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software
Systems (ed J C Mason and M G Cox) 59—72 Chapman and Hall

Berzins M and Dew P M (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic
systems of PDEs ACM Trans. Math. Software 17 178-206

Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a channel
by a suction at porous walls Fluid Dynamics Research 4

5 Arguments
1: npde — Integer Input
On entry: the number of PDEs in the system to be solved.

Constraint: npde > 1.

2: m — Integer Input

On entry: the co-ordinate system used:

d03pdc.2 [NP3660/8]

d03 — Partial Differential Equations d03pdc

m=0

Indicates Cartesian co-ordinates.
m=1

Indicates cylindrical polar co-ordinates.
m=2

Indicates spherical polar co-ordinates.

Constraint: 0 < m < 2.

3: ts — double * Input/Output
On entry: the initial value of the independent variable ¢.
On exit. the value of ¢ corresponding to the solution values in u. Normally ts = tout.

Constraint: ts < tout.

4 tout — double Input

On entry: the final value of ¢ to which the integration is to be carried out.

5: pdedef — function, supplied by the user External Function

pdedef must compute the values of the functions P;;, O; and R; which define the system of PDEs.
The functions may depend on x, #, U and U, and must be evaluated at a set of points.

Its specification is:

void pdedef (Integer mpde, double t, const double x[], Integer nptl,
const double u[], const double ux[], double p[], double q[], double r[],
Integer *ires, Nag_Comm *comm)

1: npde — Integer Input
On entry: the number of PDEs in the system.

2: t — double Input

On entry: the current value of the independent variable .

3: x[nptl] — const double Input

On entry: contains a set of mesh points at which P;;, O; and R; are to be evaluated. x[0]
and x[nptl — 1] contain successive user-supplied break points and the elements of the array
will satisfy x[0] < x[1] < --- < x[nptl — 1].

4: nptl — Integer Input

On entry: the number of points at which evaluations are required (the value of npoly + 1).

5: u[npde x nptl] — const double Input

On entry: u[npde X j + i] contains the value of the component U,(x, t) where x = x[j — 1],
fori=1,2,...,npde; j =1,2,... nptl

6: ux[npde x nptl] — const double Input

oU,(x,1)
Ox

On entry: ux[npde X j + i] contains the value of the component where

x=x[j—1], fori=1,2,... ,npde; j =1,2,... nptl

[NP3660/8] d03pdc.3

d03pdc

10:

11:

NAG C Library Manual

p[npde x npde x nptl] — double Output
On exit: pnpde x npde x j + i] must be set to the value of P;;(x,¢,U, U,) where
x=x[k—1], fori,j =1,2,...,npde; k = 1,2,... nptl.

q[npde x nptl] — double Output
On exit: q[npde X j + i] must be set to the value of Q,(x,¢, U, U,) where x = x[j — 1], for
i=1,2,...,npde; j =1,2,... nptl

r[npde x nptl] — double Output
On exit: r[npde X j + i] must be set to the value of R;(x,¢, U, U,) where x = x[j — 1], for
i=1,2,...,npde; j =1,2,... nptl

ires — Integer * Input/Output
On entry: set to —1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires = 2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER _STOP.
ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag_pde parab_1d_coll (d03pdc) returns to the calling function with
the error indicator set to fail.code = NE_FAILED DERIV.

comm — Nag Comm * Communication Structure

Pointer to structure of type Nag_Comm,; the following members are relevant to pdedef.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab _1d coll (d03pdc)
these pointers may be allocated memory by the user and initialized with various
quantities for use by pdedef when called from nag pde parab 1d coll (d03pdc).

6: bndary — function, supplied by the user External Function

bndary must compute the functions 3; and ~; which define the boundary conditions as in equation

3).

Its specification is:

d03pdc.4

void bndary (Integer npde, double t, const double u[], const double ux[],

Integer ibnd, double beta[], double gammal[], Integer xires,
Nag_Comm *comm)

npde — Integer Input
On entry: the number of PDEs in the system.

t — double Input

On entry: the current value of the independent variable .

[NP3660/8]

d03 — Partial Differential Equations d03pdc

u[npde| — const double Input
On entry: u[i — 1] contains the value of the component U;(x, ¢) at the boundary specified
by ibnd, for i = 1,2,..., npde.

ux[npde] — const double Input

oU,(x,t
On entry: ux[i — 1] contains the value of the component %
x

at the boundary
specified by ibnd, for i =1,2,..., npde.

ibnd — Integer Input
On entry: specifies which boundary conditions are to be evaluated.
ibnd =0
bndary must set up the coefficients of the left-hand boundary, x = a.
ibnd # 0
bndary must set up the coefficients of the right-hand boundary, x = b.

beta[npde] — double Output
On exit: beta[i — 1] must be set to the value of (3;(x,¢) at the boundary specified by ibnd,
fori=1,2,... npde

gamma npde| — double Output
On exit: gammal[i — 1] must be set to the value of 7,(x,¢, U, U,) at the boundary specified
by ibnd, for i = 1,2,... npde.

ires — Integer * Input/Output
On entry: set to —1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires =2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER_STOP.
ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag pde parab 1d coll (d03pdc) returns to the calling function with
the error indicator set to fail.code = NE_FAILED DERIV.

comm — Nag Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to bndary.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab _1d coll (d03pdc)
these pointers may be allocated memory by the user and initialized with various
quantities for use by bndary when called from nag pde parab _1d coll (d03pdc).

7: u[npde X npts] — double Input/Output

On entry: if ind = 1 the value of u must be unchanged from the previous call.

[NP3660/8]

d03pdc.5

d03pdc NAG C Library Manual

10:

11:

12:

13:

On exit: u[npde x j + i] will contain the computed solution at ¢ = ts.

nbkpts — Integer Input
On entry: the number of break points in the interval [a, b].

Constraint: nbkpts > 2.

xbkpts[nbkpts] — const double Input

On entry: the values of the break points in the space direction. xbkpts[0] must specify the left-hand
boundary, a, and xbkpts[nbkpts — 1] must specify the right-hand boundary, b.

Constraint: xbkpts[0] < xbkpts[1] < --- < xbkpts[nbkpts — 1].

npoly — Integer Input

On entry: the degree of the Chebyshev polynomial to be used in approximating the PDE solution
between each pair of break points.

Constraint: 1 < npoly < 49.

npts — Integer Input
On entry: the number of mesh points in the interval [a, b].

Constraint: npts = (nbkpts — 1) x npoly + 1.

x[npts] — double Output
On exit: the mesh points chosen by nag pde parab 1d coll (d03pdc) in the spatial direction. The
values of x will satisfy x[0] < x[1] < --- < x[npts — 1].

uinit — function, supplied by the user External Function

uinit must compute the initial values of the PDE components U, (xj,to), for i=1,2,...,npde;
j=1,2,... npts.

Its specification is:

void uinit (Integer npde, Integer npts, const double x[], double ul],
Nag_Comm *comm)

1: npde — Integer Input
On entry: the number of PDEs in the system.

2: npts — Integer Input

On entry: the number of mesh points in the interval [a, b].

3: x[npts] — const double Input
On entry: x[j — 1], contains the values of the jth mesh point, for j = 1,2, ..., npts.

4: u[npde x npts] — double Output

On exit: ulnpde x j + i] must be set to the initial value U, (x;,1,), for i = 1,2, ..., npde;
j=12,... npts.

5: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag Comm,; the following members are relevant to uinit.

d03pdc.6 [NP3660/8]

d03 — Partial Differential Equations d03pdc

15:

16:

17:

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab _1d coll (d03pdc)
these pointers may be allocated memory by the user and initialized with various
quantities for use by uinit when called from nag pde parab 1d coll (d03pdc).

acc — double Input

On entry: a positive quantity for controlling the local error estimate in the time integration. If E(i,j)
is the estimated error for U; at the jth mesh point, the error test is:

|E(i,j)| = ace x (1.0 + |u[npde x j + i]|).

Constraint: acc > 0.0.

rsave[lrsave] — double Communication Array
If ind = 0, rsave need not be set on entry.

If ind = 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

Irsave — Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag_pde parab 1d coll (d03pdc) is called.

Constraint: Irsave > 11 x npde x npts + 50 + nwkres + lenode, where
nwkres =3 x (npoly + 1)* + (npoly + 1) x (npde’ + 6 x npde + nbkpts + 1) +

13 x npde + 5, and lenode = npde x npts x (3 x npde x (npoly + 1) — 2).

isave[lisave] — Integer Communication Array
If ind = 0, isave need not be set on entry.

If ind = 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration. In particular:

isave[0]
Contains the number of steps taken in time.
isave|l]

Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave[2]

Contains the number of Jacobian evaluations performed by the time integrator.
isave[3]

Contains the order of the last backward differentiation formula method used.
isave[4]

Contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU
decomposition of the Jacobian matrix.

[NP3660/8] d03pde.7

d03pdc NAG C Library Manual

18:

19:

20:

21:

22:

23:

lisave — Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag_pde parab_1d coll (d03pdc) is called.

Constraint: lisave > npde X npts 4 24.

itask — Integer Input
On entry: specifies the task to be performed by the ODE integrator.
itask = 1
Normal computation of output values u at ¢ = tout.
itask = 2
One step and return.
itask =3
Stop at first internal integration point at or beyond ¢ = tout.

Constraint: 1 < itask < 3.

itrace — Integer Input

On entry: the level of trace information required from nag pde parab 1d coll (d03pdc) and the
underlying ODE solver. itrace may take the value —1, 0, 1, 2, or 3.

itrace = —1

No output is generated.
itrace = 0

Only warning messages from the PDE solver are printed.
itrace > 0

Output from the underlying ODE solver is printed. This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

If itrace < —1, then —1 is assumed and similarly if itrace > 3, then 3 is assumed.

The advisory messages are given in greater detail as itrace increases.

outfile — const char * Input
On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.
ind — Integer * Input/Output
On entry: must be set to 0 or 1.
ind =0

Starts or restarts the integration in time.
ind =1

Continues the integration after an earlier exit from the function. In this case, only the
arguments tout and fail should be reset between calls to nag pde parab 1d coll (d03pdc).

Constraint: 0 < ind < 1.

On exit: ind = 1.

comm — Nag Comm * Communication Structure

The NAG communication argument (see Section 2.2.1.1 of the Essential Introduction).

d03pdc.8 [NP3660/8]

d03 — Partial Differential Equations d03pdc

24:

25:

6

saved — Nag D03 Save * Communication Structure
Note: saved is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).

saved must remain unchanged following a previous call to a d03 function and prior to any
subsequent call to a d03 function.

fail — NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but a small change in acc is unlikely to result in a changed solution.
acc = (value).

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires = 3 in pdedef or bndary.

NE_FAILED START

acc was too small to start integration: ace = (value).

NE_FAILED_STEP

Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts = (value).

Underlying ODE solver cannot make further progress from the point ts with the supplied value of
acc. ts = (value), ace = (value).

NE_INCOMPAT_PARAM

On entry, m > 0 and xbkpts[0] < 0.0: m = (value), xbkpts[0] = (value).

NE_INT

On entry, ind is not equal to 0 or 1: ind = (value).

ires set to an invalid value in call to pdedef or bndary.
On entry, itask is not equal to 1, 2, or 3: itask = (value).
On entry, m is not equal to 0, 1, or 2: m = (value).

On entry, nbkpts = (value).
Constraint: nbkpts > 2.

On entry, npde = (value).
Constraint: npde > 1.

On entry, npoly = (value).
Constraint: 1 < npoly < 49.

NE_INT 2

On entry, lisave is too small: lisave = (value). Minimum possible dimension: (value).

[NP3660/8] d03pdc.9

d03pdc NAG C Library Manual

On entry, Irsave is too small: Irsave = (value). Minimum possible dimension: (value).

NE_INT_3

On entry, npts = (value), nbkpts = (value), npoly = (value).
Constraint: npts = (nbkpts — 1) x npoly + 1.

On entry, npts is not equal to (nbkpts — 1) x npoly + 1: npts = (value), nbkpts = (value),
npoly = (value).

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_NOT_CLOSE_FILE

Cannot close file (value).

NE_NOT_STRICTLY_INCREASING

On entry, break points xbkpts are badly ordered: i = (value), xbkpts[i — 1] = (value), j = (value),
xbkpts|j — 1] = (value).

NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

NE_REAL

On entry, acc = (value).
Constraint: acc > 0.0.

NE_REAL 2
On entry, tout — ts is too small: tout = (value), ts = (value).

On entry, tout < ts: tout = (value), ts = (value).

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

Flux function appears to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires = 2 has been set in pdedef or bndary. Integration is
successful as far as ts: ts = (value).

7 Accuracy

nag_pde parab 1d coll (d03pdc) controls the accuracy of the integration in the time direction but not the
accuracy of the approximation in space. The spatial accuracy depends on the degree of the polynomial
approximation npoly, and on both the number of break points and on their distribution in space. In the
time integration only the local error over a single step is controlled and so the accuracy over a number of
steps cannot be guaranteed. You should therefore test the effect of varying the accuracy argument, acc.

8 Further Comments

nag pde parab_1d coll (d03pdc) is designed to solve parabolic systems (possibly including elliptic
equations) with second-order derivatives in space. The argument specification allows you to include
equations with only first-order derivatives in the space direction but there is no guarantee that the method

d03pdc.10 [NP3660/8]

d03 — Partial Differential Equations d03pdc

of integration will be satisfactory for such systems. The position and nature of the boundary conditions in
particular are critical in defining a stable problem.

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

9 Example

The problem consists of a fourth-order PDE which can be written as a pair of second-order elliptic-
parabolic PDEs for U, (x,?) and U,(x,?),

o*U,
0="a2 ~ 1 @
ou, U, U, oU,
o~ ae TUra T Uy ®)
where —1 <x <1 and ¢t > 0. The boundary conditions are given by
ou
—~1—-0 and U =1 atx=-1, and
Ox
U
UL _ o and U =-1 atx=1.
Ox

The initial conditions at ¢t = 0 are given by

U sin ™ and U i sin ™
= —sin— = —sin—.
: 2 2T 47

The absence of boundary conditions for U, (x, ¢) does not pose any difficulties provided that the derivative

. . . ou .
flux boundary conditions are assigned to the first PDE (4) which has the correct flux, 8—1 The conditions
X

on U,(x,t) at the boundaries are assigned to the second PDE by setting 3, = 0.0 in equation (3) and
placing the Dirichlet boundary conditions on U, (x,?) in the function -,.

9.1 Program Text
/* nag_pde_parab_1d_coll (dO3pdc) Example Program.

Copyright 2001 Numerical Algorithms Group.

Mark 7, 2001.
Mark 7b revised, 2004.

* X ¥k F

*/

#include <stdio.h>

#include <math.h>

#include <nag.h>

#include <nag_stdlib.h>

#include <nagd03.h>

#include <nagx0l.h>

static void uinit(Integer, Integer, const double[], double[], Nag_Comm *);

static void pdedef (Integer, double, const double[], Integer, const doublel],
const double[], double[], double[], doublel],
Integer *, Nag_Comm *);

static void bndary(Integer, double, const double[], const double[], Integer,
double[], double[], Integer %, Nag_Comm *);

#define U(I,J) ulnpde*x((J)-1)+ 1
#define UOUT(I,J,K) uout[npdex tp ((K)=-1)+(J)-1)+(1)-1]
)=

(I)-1]
(intpts=*
#define P(I,J,K) plnpde*(npde*((K)-1)+(J)-1)+(I)-1]
(I)-1]
(I)-1]
+(I

#define Q(I,J) glnpdex*((J))+ 1
#define R(I,J) r[npdex((J)+ 1
#define UX(I,J) ux[npde*(() 1))=11

int main(void)

{

[NP3660/8] d03pdc.11

d03pdc NAG C Library Manual

const Integer nbkpts=10, nelts=nbkpts-1, npde=2, npoly=3,
m=0, itype=1l, npts=nelts*npoly+l, neqgn=npde*npts,
intpts=6, npll=npoly+1l, lisave=neqn+24,
mu=npde* (npoly+1)-1, lenode=(3*mu+l)*neqn,
nwkres=3*npll*npll+npll+* (npde*npde+6*npde+nbkpts+1)
+13*npde+5, lrsave=1ll*neqnt50+nwkres+tlenode;

static double xout[e6] = { -1.,-.6,-.2,.2,.6,1. };
double acc, tout, ts;
Integer exit_status, i, ind, it, itask, itrace;

double *rsave=0, *u=0, *uout=0, *x=0, *xbkpts=0;
Integer xisave=0;

NagError fail;

Nag_Comm comm;

Nag_DO03_Save saved;

/* Allocate memory */

if (!(rsave = NAG_ALLOC(lrsave, double)) ||
! (u = NAG_ALLOC (npde*npts, double)) ||
! (uout = NAG_ALLOC (npde*intpts*itype, double)) ||
I (x = NAG_ALLOC(npts, double)) ||
! (xbkpts = NAG_ALLOC (nbkpts, double)) ||
! (isave = NAG_ALLOC(lisave, Integer)))
{

Vprintf ("Allocation failure\n");

exit_status = 1;

goto END;

}

INIT_FAIL(fail);
exit_status = 0;

Vprintf ("nag_pde_parab_1d_coll (dO03pdc) Example Program Results\n\n");

acc = le-4;
itrace = 0;

/* Set the break-points */

for (i = 0; i < 10; ++1)
{
xbkpts[i] = i*2.0/9.0- 1.0;
}

ind = 0;
itask = 1;

ts = 0.0;

tout = le-5;

Vprintf (" Polynomial degree =%41d4", npoly);

Vprintf (" No. of elements = %41d\n\n", nelts);
Vprintf (" Accuracy requirement = %9.3e", acc);
Vprintf (" Number of points = %51d\n\n", npts);
Vprintf (" t / X ");

for (i = 0; 1 < 6; ++1)
{
Vprintf ("%8.4f", xout[i]
Vprintf ((i+1l)%6 == |
}
Vprintf ("\n");

7

)
i == 5 ?ll\nll:llll);

/* Loop over output values of t */
for (it = 0; it < 5; ++it)
{
tout *= 10.0;

/* nag_pde_parab_1d_coll (dO03pdc).
* General system of parabolic PDEs, method of lines,

d03pdc.12 [NP3660/8]

d03 — Partial Differential Equations

* Chebyshev C"0 collocation, one space variable
*/
nag_pde_parab_1d_coll(npde, m, &ts, tout, pdedef, bndary, u,

xbkpts, npoly, npts, x, uinit, acc, rsave,

isave, lisave, itask, itrace, 0, &ind,
&saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf ("Error from nag_pde_parab_1d_coll (d03pdc).\n%s\n",

fail.message);
exit_status = 1;
goto END;
}

/* Interpolate at required spatial points */

/* nag_pde_interp_1d_coll (d03pyc).
* PDEs, spatial interpolation with nag_pde_parab_1d_coll
* (d03pdc) or nag_pde_parab_1d_coll_ode (dO3pjc)
*/
nag_pde_interp_1d_coll(npde, u, nbkpts, xbkpts, npoly, npts,
itype, uout, rsave, lrsave, &fail);

if (fail.code != NE_NOERROR)
{

xout,

Vprintf ("Error from nag_pde_interp_1ld_coll (d03pyc) .\n%s\n",

fail.message);
exit_status = 1;
goto END;
}

Vprintf ("\n %6.4f u(l)", tout);

for (i = 1; 1 <= 6; ++1i)

{
Vprintf ("%8. 4f", UuouT(1,1,1));
Vprintf (i%6 == 0 || 1 == 6 2"\n":"");
¥
Vprintf (" u(2)");
for (1 = 1; 1 <= 6; ++1)
{
Vprintf ("%8.4f", UOUT(2,i,1));
Vprintf (i%e6 == [1 == 6 2"\n":"");
¥

}

/* Print integration statistics =*/

Vprintf ("\n") ;

Vprintf (" Number of integration steps in time
Vprintf ("%41d\n",isave[0]) ;

Vprintf (" Number of residual evaluations of resulting ODE system
Vprintf ("%41d\n",isavel[l]);

Vprintf (" Number of Jacobian evaluations
Vprintf ("%41d\n",isavel[2]);

Vprintf (" Number of iterations of nonlinear solver
Vprintf ("%41d\n",isavel[4]);
END:

if (rsave) NAG_FREE (rsave) ;

if (u) NAG_FREE (u);

if (uout) NAG_FREE (uout) ;

if (x) NAG_FREE(x);

if (xbkpts) NAG_FREE (xbkpts) ;

if (isave) NAG_FREE (isave);

return exit_status;

[NP3660/8]

d03pdc

nbkpts,
lrsave,
&comm,

intpts,

d03pdc.13

d03pdc

static void uinit(Integer npde,

Integer npts,

NAG C Library Manual

const double x[],

double ul], Nag_Comm #*comm)

{
Integer 1ij;
double piby2;
piby2 = 0.5*nag_pi;
for (i = 1; i <= npts; ++1i)
{
U(1l, i) = -sin(piby2*x[i-11);
U(2, 1) = -piby2#*piby2*U(1,
}
return;
}

static void pdedef (Integer npde,

double t,
const double ull],
double qgll,

i);

const double x[], Integer nptl,
const double ux[], double pl],
double r[], Integer =*ires,

Nag_Comm *comm)

{
Integer 1i;
for (i = 1; i <= nptl; ++1i)
{
Q(1, i) = U(2, 1i);
Q(2, i) = U0(1, 1)*UX(2, 1)
R(1, 1) = UX(1, 1i);
R(2, 1) = UX(2, 1i);
P(1, 1, i) = 0.0;
P(1, 2, i) = 0.0;
P(2, 1, 1) 0.0;
P(2, 2, 1) = 1.0;
}
return;
¥

static void bndary(Integer npde,

double t,
const double uxl[],
double gammall],

const double ull,
Integer ibnd, double betall],
Integer *ires, Nag_Comm #*comm)

{
if (ibnd == 0)
{
betal0] = 1.0;
gamma[0] = 0.0;
betall] = 0.0;
gamma[l] = ul[0] - 1.0;
}
else
betal0] = 1.0;
gamma[0] = 0.0;
betall] = 0.0;
gamma[l] = ul0] + 1.0;
3
return;
¥
9.2 Program Data
None.
9.3 Program Results
nag_pde_parab_1d_coll (d03pdc) Example Program Results
Polynomial degree = 3 No. of elements = 9
Accuracy requirement = 1.000e-04 Number of points = 28

t / X

d03pdc.14

-1.0000 -0.6000 -0.2000

0.2000 0.6000 1.0000

[NP3660/8]

d03 — Partial Differential Equations

0.0001 u(

) 1.0000

u(2) -2.4850

0.0010 wu(

) 1.0000

u(2) -2.5583

0.0100 u(

) 1.0000

u(2) -2.6962

0.1000 u(

) 1.0000

u(2) -2.9022

1.0000 u(

) 1.0000

u(2) -2.9233

Number of
Number of
Number of
Number of

0.
-1.

0.
-1.

0.
-1.

0.
-1.

0.
-1.

8090
9957

8085
9913

8051
9481

7951
8339

7939
8247

integration steps in
residual evaluations
Jacobian evaluations
iterations of nonlinear solver

.3090
.7623

.3088
.7606

.3068
.7439

.2985
.6338

.2972
.6120

time

of resulting

.3090
.7623

.3088
.7606

.3068
.7439

.2985
.6338

.2972
.6120

-0.8090 -1.
1.9957 2
-0.8085 -1.
1.9913 2.
-0.8051 -1.
1.9481 2
-0.7951 -1.
1.8339 2.
-0.7939 -1.
1.8247 2

ODE system

0000

.4850

0000
5583

0000

.6962

0000
9022

0000

.9233

50
407
18
122

d03pdc

[NP3660/8]

d03pdc.15 (last)

	d03pdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	npde
	m
	ts
	tout
	pdedef
	npde
	t
	x
	nptl
	u
	ux
	p
	q
	r
	ires
	comm
	user
	iuser
	p

	bndary
	npde
	t
	u
	ux
	ibnd
	beta
	gamma
	ires
	comm
	user
	iuser
	p

	u
	nbkpts
	xbkpts
	npoly
	npts
	x
	uinit
	npde
	npts
	x
	u
	comm
	user
	iuser
	p

	acc
	rsave
	lrsave
	isave
	lisave
	itask
	itrace
	outfile
	ind
	comm
	saved
	fail

	6 Error Indicators and Warnings
	NE_ACC_IN_DOUBT
	NE_BAD_PARAM
	NE_FAILED_DERIV
	NE_FAILED_START
	NE_FAILED_STEP
	NE_INCOMPAT_PARAM
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_INTERNAL_ERROR
	NE_NOT_CLOSE_FILE
	NE_NOT_STRICTLY_INCREASING
	NE_NOT_WRITE_FILE
	NE_REAL
	NE_REAL_2
	NE_SING_JAC
	NE_TIME_DERIV_DEP
	NE_USER_STOP

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

